

Code No. : 15658 O

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (I.T.) V-Semester Backlog Examinations, Jan./Feb.-2024

Automata Languages & Computation

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No.	Stem of the question	M	L	CO	PO
1.	Differentiate between NFA and DFA.	2	1	1	1
2.	Construct DFA that accepts all strings of a's and b's where each string starts with 'a' over alphabet $\{a,b\}$.	2	3	1	1,2
3.	State decision properties of regular languages.	2	1	2	1
4.	Distinguish Type2 and Type1 grammars with an example	2	2	2	1
5.	Define PDA.	2	1	3	1
6.	State pumping lemma for CFL's.	2	2	3	1
7.	Define non-deterministic Turing machine.	2	1	4	1
8.	What is an instantaneous description of a TM?	2	2	4	1
9.	Distinguish between recursive and recursively enumerable languages.	2	2	5	2
10.	State Church-Turing hypothesis.	2	1	5	1
	Part-B $(5 \times 8 = 40 \text{ Marks})$				
11. a)	Give DFA's accepting the following languages over the alphabet {0,1}.(i) the set of all strings ending in 00	4	3	1	1
	(ii) the set of all strings with 011 as a substring.				
b)	State Arden's Theorem. Construct regular expressions which are equivalent to the following finite automata by applying Arden's Theorem	4	4	1	1
12. a)	State and prove pumping lemma theorem for regular languages. Show that the language $L = \{a^n n \text{ is a perfect square}\}$ is not regular.	4	2	2	1
b)	Explain Closure properties of regular languages with an example.	4	1	2	1
13. a)	Convert the following grammar (over the alphabet $\{a, b, c, d\}$) to the Chomsky normal form.	4	3	3	2
	$S \rightarrow aSd \mid T$				
	$T \rightarrow bTc \mid \Box$				

20

	b)	Apply CYK Algorithm on the input string "cbba" for the following CFG in ChomskyNormalForm and determine whether it is member of $L(G)$ S \rightarrow AB	4	3	3	2
		$A \rightarrow CC a c$ $B \rightarrow BC b$ $C \rightarrow CB BA c$				
14		Describe the programming techniques for Turing Machines.	4	2	4	1
14.	a) b)	Design a TM to accept the language $L = \{0^n 1^n 2^n n \ge 1\}$ and also show the sequence of moves made by the TM for the string "001122".	4	4	4	3
15.	a)	Define PCP and MPCP. Given the MPCP instance shown below, construct PCP instance.	4	. 3	5	1
		List A= (110, 0011, 0110) List B= (110110, 00, 110)	i b			
	b)	Discuss about Diagonalization language (L _d). Show that L_d is not recursively enumerable.	4	2	5	1
16.	a)	Convert the following NFA to a DFA. Be sure to label each state in the DFA with the corresponding state(s) in the NFA.	4	3	1	2
		a,b a,b a,b a,b a,b a,b a,b a,b a				
	b)	Minimize the following Deterministic Finite Automata and prove that your new DFA is minimal.	4	3	2	2
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
17.		Answer any <i>two</i> of the following:				
1 / .	a)	Simplify the following grammar $S \rightarrow aA \mid aBB$	4	2	3	1
		$A \rightarrow aAA \mid \varepsilon$ $B \rightarrow bB \mid b$ $C \rightarrow B$				
	b)	Design a TM to accept the language $L = \{wcw \mid w \in (a+b)^*\}$ and also show the sequence of moves made by the TM for the string " <i>aabcaab</i> ".	4	2	4	1
			1			

broom bro	Achony Berei, Co, Course Succome,	r o, r rogramme o ato
i)	Blooms Taxonomy Level – 1	23,68%
ii)	Blooms Taxonomy Level – 2	36.84%
iii)	Blooms Taxonomy Level – 3 & 4	39.47%
