VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD
Accredited by NAAC with A++ Grade
B.E. (I.T.) V-Semester Backlog Examinations, Jan./Feb.-2024

Automata Languages \& Computation
Time: $\mathbf{3}$ hours
Max. Marks: 60
Note: Answer all questions from Part-A and any FIVE from Part-B
Part-A $(10 \times 2=20$ Marks $)$

Q. No.	Stem of the question	M	L	CO	PO
1.	Differentiate between NFA and DFA.	2	1	1	1
2.	Construct DFA that accepts all strings of a's and b's where each string starts with 'a' over alphabet $\{a, b\}$.	2	3	1	1,2
3.	State decision properties of regular languages.	2	1	2	1
4.	Distinguish Type2 and Type 1 grammars with an example	2	2	2	1
5.	Define PDA.	2	1	3	1
6.	State pumping lemma for CFL's.	2	2	3	1
7.	Define non-deterministic Turing machine.	2	1	4	1
8.	What is an instantaneous description of a TM?	2	2	4	1
9.	Distinguish between recursive and recursively enumerable languages.	2	2	5	2
10.	State Church-Turing hypothesis.	2	1	5	1
11. a)	$\text { Part-B }(5 \times 8=40 \text { Marks })$ Give DFA's accepting the following languages over the alphabet $\{0,1\}$. (i) the set of all strings ending in 00 (ii) the set of all strings with 011 as a substring.	4	3	1	1
b)	State Arden's Theorem. Construct regular expressions which are equivalent to the following finite automata by applying Arden's Theorem	4	4	1	1
12. a)	State and prove pumping lemma theorem for regular languages. Show that the language $\mathrm{L}=\left\{\mathrm{a}^{n} \mid \mathrm{n}\right.$ is a perfect square $\}$ is not regular.	4	2	2	1
b)	Explain Closure properties of regular languages with an example.	4	1	2	1
13. a)	Convert the following grammar (over the alphabet $\{a, b, c, d\}$) to the Chomsky normal form. $\begin{aligned} & \mathrm{S} \rightarrow \mathrm{aSd} \mid \mathrm{T} \\ & \mathrm{~T} \rightarrow \mathrm{bTc} \mid \square \end{aligned}$	4	3	3	2

Contd... 2
b) Apply CYK Algorithm on the input string "cbba" for the following CFG in ChomskyNormalForm and determine whether it is member of $L(G)$
$\mathrm{S} \rightarrow \mathrm{AB}$
$\mathrm{A} \rightarrow \mathrm{CC}|\mathrm{a}| \mathrm{c}$
$\mathrm{B} \rightarrow \mathrm{BC} \mid \mathrm{b}$
$\mathrm{C} \rightarrow \mathrm{CB}|\mathrm{BA}| \mathrm{c}$
14. a) Describe the programming techniques for Turing Machines.
b) Design a TM to accept the language $L=\left\{0^{n} 1^{n} 2^{n} \mid n>=1\right\}$ and also show the sequence of moves made by the TM for the string " 001122 ".
15. a) Define PCP and MPCP. Given the MPCP instance shown below, construct PCP instance.
List $A=(110,0011,0110)$
List $\mathrm{B}=(110110,00,110)$
b) Discuss about Diagonalization language $\left(L_{d}\right)$. Show that L_{d} is not recursively enumerable.
16. a) Convert the following NFA to a DFA. Be sure to label each state in the DFA with the corresponding state(s) in the NFA.

b) Minimize the following Deterministic Finite Automata and prove that your new DFA is minimal.

17. Answer any two of the following:
a) Simplify the following grammar
$\mathrm{S} \rightarrow \mathrm{aA} \mid \mathrm{aBB}$
$\mathrm{A} \rightarrow \mathrm{aAA} \mid \varepsilon$
$\mathrm{B} \rightarrow \mathrm{bB} \mid \mathrm{b}$
$\mathrm{C} \rightarrow \mathrm{B}$
b) Design a TM to accept the language $\mathrm{L}=\left\{\mathrm{wcw} \mid \mathrm{w} \in(\mathrm{a}+\mathrm{b})^{*}\right\}$ and also show the sequence of moves made by the TM for the string "aabcaab".
c)

What is undecidability? How does this leads to untractability? Explain.

4	3	3	2
4	2	4	1
4	4	4	3

4	3	5

4	2	5	1

$\begin{array}{llll}4 & 3 & 1 & 2\end{array}$

432
$\begin{array}{llll}4 & 2 & 3 & 1\end{array}$
$4 \quad 2 \quad 4 \quad 1$
$\begin{array}{llll}4 & 1 & 5 & 1\end{array}$

PO: Programme Outcome

i)	Blooms Taxonomy Level - 1	
ii)	Blooms Taxonomy Level -	23.68%
iii)	Blooms Taxonomy Level - $3 \& 4$	36.84%

